warehouse Shared Resource

CADT WarehouseAccessControl

OPERATIONS

ACTION enterWarehouse: $\mathbb{N}[i] \times \mathbb{N}[i]$
ACTION exitWarehouse: $\mathbb{N}[i] \times \mathbb{N}[i]$

SEMANTICS

DOMAIN:
STATE: (weight : Warehouse \rightarrow Weight \times occupied : Warehouse $\rightarrow \mathbb{B}$)
TYPE: Warehouse = 0... N_WAREHOUSES - 1
Weight = 0 ... MAX_WEIGHT_IN_WAREHOUSE
INITIAL: $\forall n \in$ Warehouse \bullet weight $(n)=0 \wedge \neg \operatorname{occupied}(n)$
INVARIANT: $\forall n \in$ Warehouse • weight $(n) \leq$ MAX_WEIGHT_IN_WAREHOUSE
PRE: $n \in\{0 \ldots$ N_WAREHOUSES -1$\} \wedge w \in\{0 \ldots$ MAX_WEIGHT_IN_WAREHOUSE -1$\}$
CPRE: $w+w e i g h t(n) \leq$ MAX_WEIGHT_IN_WAREHOUSE enterWarehouse(n,w)
POST: weight $=$ weight $^{\mathrm{in}} \oplus\left\{n \mapsto\right.$ weight $\left.^{\mathrm{in}}(n)+w\right\} \wedge$
$\left(n>0 \Rightarrow\right.$ occupied $=$ occupied $^{\mathrm{in}} \oplus\{n \mapsto$ False $\left.\}\right) \wedge$
$\left(n=0 \Rightarrow\right.$ occupied $=$ occupied $\left.^{\text {in }}\right)$

PRE: $n \in\{0 \ldots$ N_WAREHOUSES -1$\} \wedge w \in\{0 \ldots$ MAX_WEIGHT_IN_WAREHOUSE -1$\}$
CPRE: $n=$ N_WAREHOUSES $-1 \vee \neg \operatorname{occupied}(n+1)$
exitWarehouse(n,w)
POST: weight $=$ weight ${ }^{\mathrm{in}} \oplus\left\{n \mapsto\right.$ weight $\left.^{\mathrm{in}}(n)-w\right\} \wedge$
$\left(n<\right.$ N_WAREHOUSES $-1 \Rightarrow$ occupied $=$ occupied $^{\text {in }} \oplus\{n+1 \mapsto$ True $\left.\}\right) \wedge$
($n=$ N_WAREHOUSES $-1 \Rightarrow$ occupied $=$ occupied $^{\text {in }}$)

